## Nitrogen Critical Loads in the Pacific Northwest, USA: Current Understanding and Data Gaps

Tonnie Cummings - National Park Service, Pacific West Region Tamara Blett and Ellen Porter - National Park Service, Air Resources Division Linda Geiser and Rick Graw - U.S. Forest Service, Pacific Northwest Region Air Program Jill McMurray - U.S. Forest Service, Northern Region Air Program Steven Perakis - U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center Regina Rochefort - National Park Service, North Cascades NP

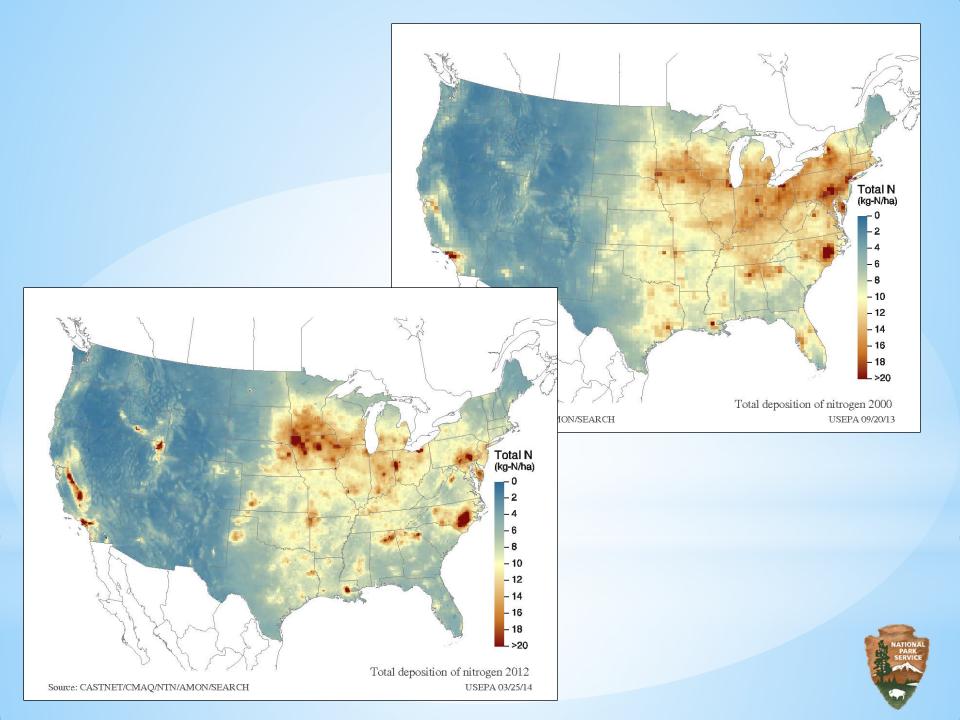


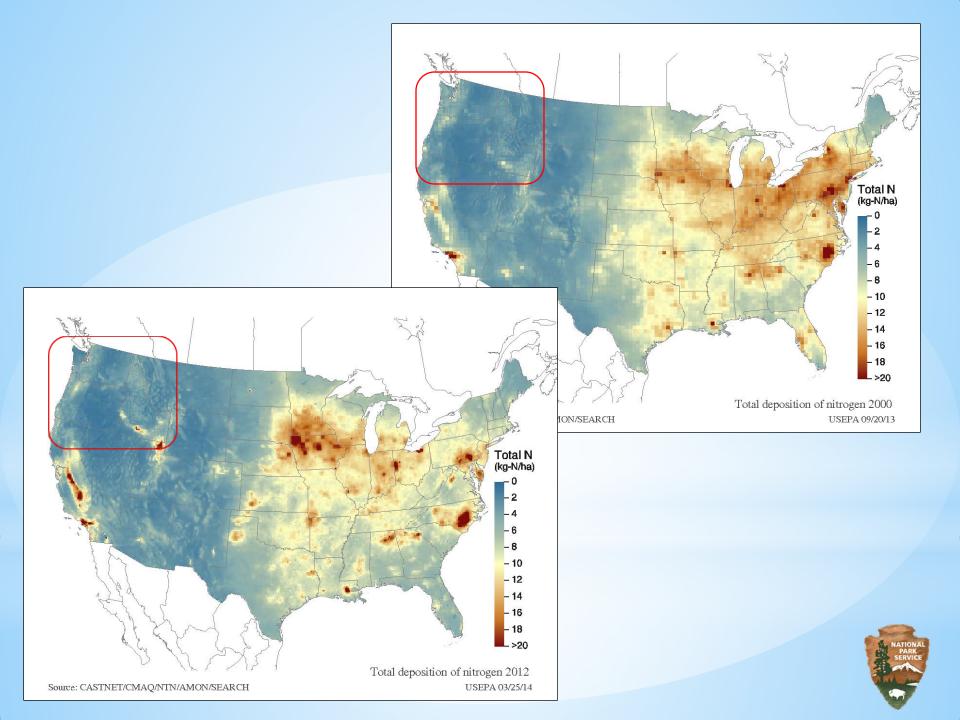


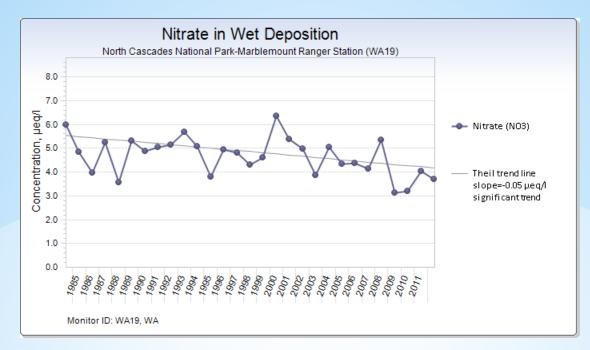


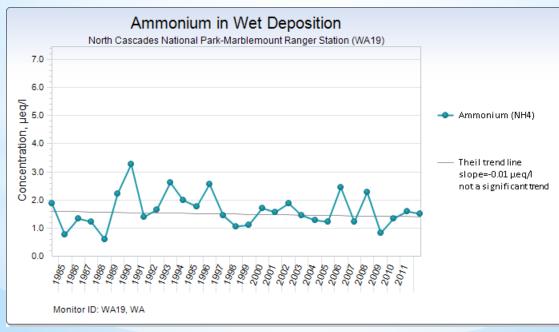
# Definitions

- A critical load is based on studies or modeling and is the amount of pollution below which harmful environmental effects are not expected to occur. (Science-based)
- A target load identifies an acceptable amount of pollution and is based on policy, economic, temporal, or other considerations. A target load may be higher or lower than a critical load. (Management decision)





# Why Did We Do This?


- NPS and USFS manage areas in Idaho, Oregon, and Washington with known or suspected nitrogen-sensitive resources and the agencies are mandated to protect those resources.
- A Pacific Northwest (PNW) Critical Loads Workshop in 2006 determined nitrogen deposition was a greater concern than sulfur deposition in the region.
- The 2011 report by Pardo et al. summarizing nitrogen critical loads nationwide concluded PNW-specific data were limited.
- While nitrogen deposition is relatively low in the PNW, studies from other areas, e.g., Rocky Mountain NP, found ecosystem effects at low deposition.
- several NADP sites in the region show decreasing trends in nitrate concentration, but no decline in ammonium concentration.

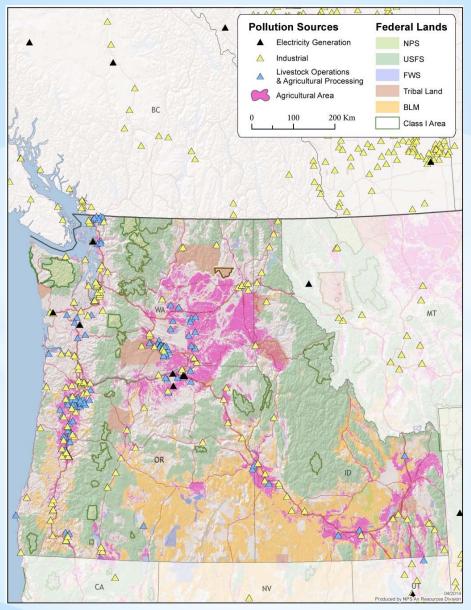








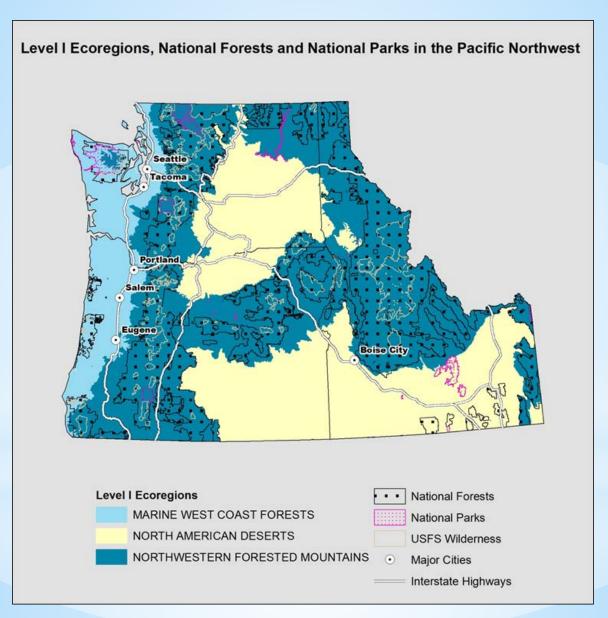





# Strategy

- We developed an approach for identifying and using nitrogen critical loads and target loads in the PNW.
- The first objective of the strategy was to publish a "state of knowledge" report that:
  - Discusses legal mandates for air quality protection
  - Describes the concept and use of critical and target loads
  - Summarizes current understanding about sources, deposition, effects, and critical loads in the region
  - Highlights current research efforts
  - Identifies and prioritizes additional data needs
  - Is useful to both subject matter experts and "lay" audiences




#### Map of Federal/Tribal Lands and Air Pollution Sources in the Region





Triangles designate sources that emit 100 tons per year or more of  $NO_x$ 

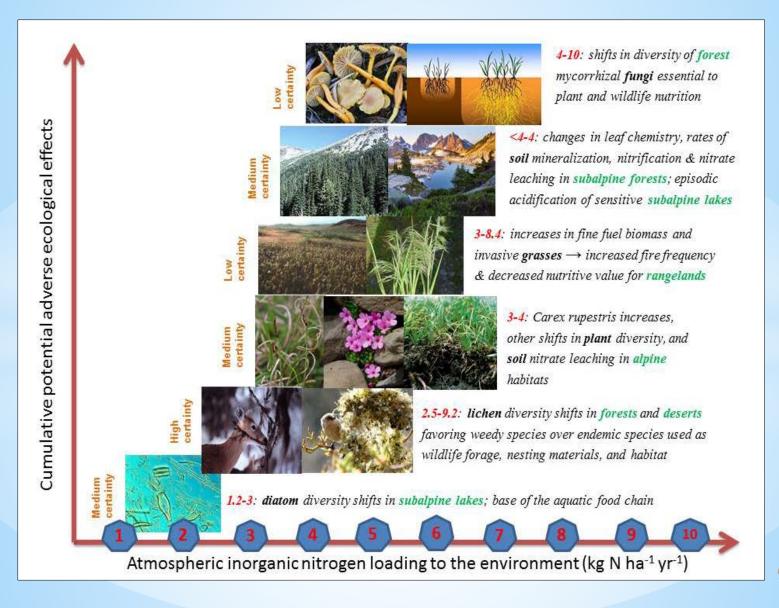
#### Critical Loads Information is Organized by Ecoregion





#### Nitrogen Critical Loads Most Representative of the PNW

| Critical Load | Deposition Measure                   | Ecosystem Effect                                                       | Ecoregion/Area                                           | Reliability for PNW | Reference             |
|---------------|--------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------|---------------------|-----------------------|
| 1.2           | Wet N (PRISM corrected NADP)         | Nutrient enrichment (diatoms)                                          | Marine West Coast Forests/Washington                     | High                | Sheibley et al., 2014 |
| 2.5-7.1       | CMAQ modeled total N                 | Lichen community changes (40 percent composition of eutrophic species) | Northwestern Forested Mountains/Oregon and<br>Washington | High                | Geiser et al., 2010   |
| 2.7-9.2       | CMAQ modeled total N                 | Lichen community changes (40 percent composition of eutrophic species) | Marine West Coast Forests/Oregon and Washington          | High                | Geiser et al., 2010   |
| 3             | Modeled N                            | Lichen thallus N concentrations; cover of eutrophic lichens            | North American Deserts/Columbia Plateau                  | Low                 | Geiser et al., 2008   |
| 3-8           | Passive samplers and bulk deposition | Increase in cheatgrass and decrease in native forbs                    | North American Deserts/Upper Columbia Basin              | Medium              | Apel et al., 2014     |
| 3.1-5.2       | N as canopy throughfall              | Lichen community composition and sensitive species response            | Northwestern Forested Mountains/ Oregon and Washington   | Medium              | Fenn et al., 2007     |
| 4             | N as canopy throughfall              | Lichen sensitive species response                                      | Northwestern Forested Mountains/Montana and<br>Wyoming   | High                | McMurray et al., 2013 |




#### Nitrogen Critical Loads Most Representative of the PNW

| Critical Load | Deposition Measure                   | Ecosystem Effect                                                       | Ecoregion/Area                                           | Reliability for PNW | Reference             |
|---------------|--------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------|---------------------|-----------------------|
| 1.2           | Wet N (PRISM corrected NADP)         | Nutrient enrichment (diatoms)                                          | Marine West Coast Forests/Washington                     | High                | Sheibley et al., 2014 |
| 2.5-7.1       | CMAQ modeled total N                 | Lichen community changes (40 percent composition of eutrophic species) | Northwestern Forested Mountains/Oregon and<br>Washington | High                | Geiser et al., 2010   |
| 2.7-9.2       | CMAQ modeled total N                 | Lichen community changes (40 percent composition of eutrophic species) | Marine West Coast Forests/Oregon and Washington          | High                | Geiser et al., 2010   |
| 3             | Modeled N                            | Lichen thallus N concentrations; cover of eutrophic lichens            | North American Deserts/Columbia Plateau                  | Low                 | Geiser et al., 2008   |
| 3-8           | Passive samplers and bulk deposition | Increase in cheatgrass and decrease in native forbs                    | North American Deserts/Upper Columbia Basin              | Medium              | Apel et al., 2014     |
| 3.1-5.2       | N as canopy throughfall              | Lichen community composition and sensitive species response            | Northwestern Forested Mountains/ Oregon and Washington   | Medium              | Fenn et al., 2007     |
| 4             | N as canopy throughfall              | Lichen sensitive species response                                      | Northwestern Forested Mountains/Montana and<br>Wyoming   | High                | McMurray et al., 2013 |



#### **Cumulative Effects of Nitrogen Deposition in the Region**





#### **Current PNW Nitrogen Critical Loads Projects**

| Organization                                                 | Objective                                                                                                                                                     | Locations                                                                                          | Results Expected                                         |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| University of Washington                                     | Document effects of N fertilization on alpine/subalpine communities.                                                                                          | One site each at Mount Rainier, North Cascades, and<br>Olympic National Parks                      | 2015                                                     |
| University of Washington                                     | Document N effects on mycorrhizal fungi in alpine/subalpine soil.                                                                                             | One site each at Mount Rainier and North Cascades<br>National Parks                                | 2014                                                     |
| Washington State University                                  | Evaluate the response of three subalpine plant communities to N deposition.                                                                                   | One site at Mount Rainier NP                                                                       | 2015                                                     |
| USFS                                                         | Refine N CLs for changes in lichen communities using lichen N concentrations,<br>IMPROVE data, and direct measurements of throughfall.                        | 5,000 surveys in Idaho, Oregon, and Washington                                                     | northern Idaho, eastern Oregon<br>and Washington in 2014 |
|                                                              |                                                                                                                                                               |                                                                                                    | western Oregon and<br>Washington in 2015                 |
| Washington State University, University of Wyoming, and USFS | Use N isotope ratios in lichens and NADP data to identify N emission sources<br>and map deposition of N and ammonium vs. nitrate.                             | About 200 survey sites throughout the northwestern U.S.<br>including Idaho, Oregon, and Washington | 2016                                                     |
| Washington State University                                  | Conduct nutrient enrichment studies in high elevation lakes to determine diatom N CLs.                                                                        | Three sites each in Mount Rainier, North Cascades, and<br>Olympic National Parks                   | 2015                                                     |
| Washington State University                                  | Use existing data to determine the influence of presence/absence of permanent<br>snow or ice in the watershed on the water chemistry of high elevation lakes. | 108 lakes at North Cascades NP                                                                     | 2014                                                     |
| Washington State University                                  | Use existing data to develop and test models to predict lake sensitivity to N deposition.                                                                     | 108 lakes at North Cascades NP                                                                     | 2015                                                     |
| USGS Powell Center                                           | Analyze FIA soils, understory vegetation, and tree data to better understand forest vegetation responses to N deposition.                                     | About 500 surveys in Oregon and Washington                                                         | 2016                                                     |
| USGS Powell Center                                           | Analyze FIA soils, and tree and soil chemical data, to better understand forest<br>biogeochemical response to N deposition.                                   | All existing FIA and published available data for Oregon<br>and Washington                         | 2017                                                     |



#### **Current PNW Nitrogen Critical Loads Projects**

| Organization                                                 | Objective                                                                                                                                                  | Locations                                                                                          | Results Expected                                                                                     |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| University of Washington                                     | Document effects of N fertilization on alpine/subalpine communities.                                                                                       | One site each at Mount Rainier, North Cascades, and Olympic National Parks                         | 2015                                                                                                 |
| University of Washington                                     | Document N effects on mycorrhizal fungi in alpine/subalpine soil.                                                                                          | One site each at Mount Rainier and North Cascades<br>National Parks                                | 2014                                                                                                 |
| Washington State University                                  | Evaluate the response of three subalpine plant communities to N deposition.                                                                                | One site at Mount Rainier NP                                                                       | 2015                                                                                                 |
| USFS                                                         | Refine N CLs for changes in lichen communities using lichen N concentrations, IMPROVE data, and direct measurements of throughfall.                        | 5,000 surveys in Idaho, Oregon, and Washington                                                     | northern Idaho, eastern Oregon<br>and Washington in 2014<br>western Oregon and<br>Washington in 2015 |
|                                                              |                                                                                                                                                            |                                                                                                    |                                                                                                      |
| Washington State University, University of Wyoming, and USFS | Use N isotope ratios in lichens and NADP data to identify N emission sources and map deposition of N and ammonium vs. nitrate.                             | About 200 survey sites throughout the northwestern U.S.<br>including Idaho, Oregon, and Washington | 2016                                                                                                 |
| Washington State University                                  | Conduct nutrient enrichment studies in high elevation lakes to determine diatom N CLs.                                                                     | Three sites each in Mount Rainier, North Cascades, and<br>Olympic National Parks                   | 2015                                                                                                 |
| Washington State University                                  | Use existing data to determine the influence of presence/absence of permanent snow or ice in the watershed on the water chemistry of high elevation lakes. | 108 lakes at North Cascades NP                                                                     | 2014                                                                                                 |
| Washington State University                                  | Use existing data to develop and test models to predict lake sensitivity to N deposition.                                                                  | 108 lakes at North Cascades NP                                                                     | 2015                                                                                                 |
| USGS Powell Center                                           | Analyze FIA soils, understory vegetation, and tree data to better understand forest vegetation responses to N deposition.                                  | About 500 surveys in Oregon and Washington                                                         | 2016                                                                                                 |
| USGS Powell Center                                           | Analyze FIA soils, and tree and soil chemical data, to better understand forest biogeochemical response to N deposition.                                   | All existing FIA and published available data for Oregon<br>and Washington                         | 2017                                                                                                 |



#### High Priority Data Needs Relative to Nitrogen Critical Loads in the PNW

| Ecosystem                   | Information Needed                                                                                                | Rationale                                                                                                                                                    | Approach                                                                                                                                  | Priority |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Regionwide                  | L .                                                                                                               |                                                                                                                                                              | Į                                                                                                                                         |          |
| Aquatic/Terrestrial         | Improved site-specific estimates of N deposition.                                                                 | There are few deposition monitoring sites in the PNW and<br>there are very few high elevation data.                                                          | Focusing on areas/resources with<br>suspected high sensitivity, collect N<br>deposition data.                                             | High     |
| Aquatic/Terrestrial         | Identify interactions of N deposition and<br>climate change that affect surface waters,<br>soils, and vegetation. | Excess N deposition may exacerbate climate change-induced stress on species and ecosystems in many ways.                                                     | Conduct N fertilization experiments along climate gradients.                                                                              | High     |
| Marine West Coast Forests a | nd Northwestern Forested Mountains                                                                                |                                                                                                                                                              | I                                                                                                                                         |          |
| Aquatic/Terrestrial         | Determine the influence of natural lake,<br>stream, and soil N levels on CLs.                                     | Some lakes, streams, and soils in the PNW naturally have<br>very high N levels due to N-fixing alders and geologic N<br>sources.                             | Use background soil N gradients,<br>fertilization studies or air pollution<br>gradients to identify CLs.                                  | High     |
| Aquatic                     | Refine sensitivity ranges for high elevation lakes to N deposition.                                               | There is a great deal of uncertainty regarding the number of<br>lakes in the PNW that are more responsive to added N than<br>to addition of other nutrients. | Use existing data to determine the percentage of lakes that are N-limited.                                                                | High     |
| North American Deserts      |                                                                                                                   |                                                                                                                                                              |                                                                                                                                           |          |
| Terrestrial                 | Identify CLs for vegetation.                                                                                      | There is currently little information specific to the PNW.                                                                                                   | Use fertilization studies and/or N deposition gradients.                                                                                  | High     |
| Terrestrial                 | Determine N sensitivity of desert<br>biological soil crusts.                                                      | Crusts are a critical component of the ecosystem because<br>they stabilize soils, fix atmospheric N, and promote<br>establishment of vascular plants.        | Use fertilization experiments and/or N<br>deposition gradients to identify and<br>monitor sensitive lichen and moss species<br>in crusts. | High     |




# Strategy - Next Steps

- Publish a report that summarizes the state of knowledge on nitrogen critical loads in the PNW.
- Encourage and support nitrogen critical loads research.
- Develop a common rationale for determining target loads.
- Develop maps showing any areas that exceed critical loads and/or target loads.
- Solicit input from EPA, state air quality agencies, and other stakeholders.
- Implement use of critical loads and target loads through agency planning and policy mechanisms.
- If nitrogen critical loads/target loads are exceeded, work with stakeholders to identify sources that contribute to exceedances and achieve emission reductions.



### **Questions?**



Tonnie\_Cummings@nps.gov or 360-816-6201

